3.119 \(\int \frac {(e \tan (c+d x))^{9/2}}{a+a \sec (c+d x)} \, dx\)

Optimal. Leaf size=326 \[ -\frac {e^{9/2} \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt {e \tan (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} a d}+\frac {e^{9/2} \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {e \tan (c+d x)}}{\sqrt {e}}+1\right )}{\sqrt {2} a d}+\frac {e^{9/2} \log \left (\sqrt {e} \tan (c+d x)-\sqrt {2} \sqrt {e \tan (c+d x)}+\sqrt {e}\right )}{2 \sqrt {2} a d}-\frac {e^{9/2} \log \left (\sqrt {e} \tan (c+d x)+\sqrt {2} \sqrt {e \tan (c+d x)}+\sqrt {e}\right )}{2 \sqrt {2} a d}+\frac {6 e^4 \cos (c+d x) E\left (\left .c+d x-\frac {\pi }{4}\right |2\right ) \sqrt {e \tan (c+d x)}}{5 a d \sqrt {\sin (2 c+2 d x)}}-\frac {6 e^3 \cos (c+d x) (e \tan (c+d x))^{3/2}}{5 a d}-\frac {2 e^3 (5-3 \sec (c+d x)) (e \tan (c+d x))^{3/2}}{15 a d} \]

[Out]

-1/2*e^(9/2)*arctan(1-2^(1/2)*(e*tan(d*x+c))^(1/2)/e^(1/2))/a/d*2^(1/2)+1/2*e^(9/2)*arctan(1+2^(1/2)*(e*tan(d*
x+c))^(1/2)/e^(1/2))/a/d*2^(1/2)+1/4*e^(9/2)*ln(e^(1/2)-2^(1/2)*(e*tan(d*x+c))^(1/2)+e^(1/2)*tan(d*x+c))/a/d*2
^(1/2)-1/4*e^(9/2)*ln(e^(1/2)+2^(1/2)*(e*tan(d*x+c))^(1/2)+e^(1/2)*tan(d*x+c))/a/d*2^(1/2)-6/5*e^4*cos(d*x+c)*
(sin(c+1/4*Pi+d*x)^2)^(1/2)/sin(c+1/4*Pi+d*x)*EllipticE(cos(c+1/4*Pi+d*x),2^(1/2))*(e*tan(d*x+c))^(1/2)/a/d/si
n(2*d*x+2*c)^(1/2)-6/5*e^3*cos(d*x+c)*(e*tan(d*x+c))^(3/2)/a/d-2/15*e^3*(5-3*sec(d*x+c))*(e*tan(d*x+c))^(3/2)/
a/d

________________________________________________________________________________________

Rubi [A]  time = 0.39, antiderivative size = 326, normalized size of antiderivative = 1.00, number of steps used = 18, number of rules used = 15, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.600, Rules used = {3888, 3881, 3884, 3476, 329, 297, 1162, 617, 204, 1165, 628, 2613, 2615, 2572, 2639} \[ -\frac {e^{9/2} \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt {e \tan (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} a d}+\frac {e^{9/2} \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {e \tan (c+d x)}}{\sqrt {e}}+1\right )}{\sqrt {2} a d}+\frac {e^{9/2} \log \left (\sqrt {e} \tan (c+d x)-\sqrt {2} \sqrt {e \tan (c+d x)}+\sqrt {e}\right )}{2 \sqrt {2} a d}-\frac {e^{9/2} \log \left (\sqrt {e} \tan (c+d x)+\sqrt {2} \sqrt {e \tan (c+d x)}+\sqrt {e}\right )}{2 \sqrt {2} a d}-\frac {6 e^3 \cos (c+d x) (e \tan (c+d x))^{3/2}}{5 a d}-\frac {2 e^3 (5-3 \sec (c+d x)) (e \tan (c+d x))^{3/2}}{15 a d}+\frac {6 e^4 \cos (c+d x) E\left (\left .c+d x-\frac {\pi }{4}\right |2\right ) \sqrt {e \tan (c+d x)}}{5 a d \sqrt {\sin (2 c+2 d x)}} \]

Antiderivative was successfully verified.

[In]

Int[(e*Tan[c + d*x])^(9/2)/(a + a*Sec[c + d*x]),x]

[Out]

-((e^(9/2)*ArcTan[1 - (Sqrt[2]*Sqrt[e*Tan[c + d*x]])/Sqrt[e]])/(Sqrt[2]*a*d)) + (e^(9/2)*ArcTan[1 + (Sqrt[2]*S
qrt[e*Tan[c + d*x]])/Sqrt[e]])/(Sqrt[2]*a*d) + (e^(9/2)*Log[Sqrt[e] + Sqrt[e]*Tan[c + d*x] - Sqrt[2]*Sqrt[e*Ta
n[c + d*x]]])/(2*Sqrt[2]*a*d) - (e^(9/2)*Log[Sqrt[e] + Sqrt[e]*Tan[c + d*x] + Sqrt[2]*Sqrt[e*Tan[c + d*x]]])/(
2*Sqrt[2]*a*d) + (6*e^4*Cos[c + d*x]*EllipticE[c - Pi/4 + d*x, 2]*Sqrt[e*Tan[c + d*x]])/(5*a*d*Sqrt[Sin[2*c +
2*d*x]]) - (6*e^3*Cos[c + d*x]*(e*Tan[c + d*x])^(3/2))/(5*a*d) - (2*e^3*(5 - 3*Sec[c + d*x])*(e*Tan[c + d*x])^
(3/2))/(15*a*d)

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 297

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]},
Dist[1/(2*s), Int[(r + s*x^2)/(a + b*x^4), x], x] - Dist[1/(2*s), Int[(r - s*x^2)/(a + b*x^4), x], x]] /; Free
Q[{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ,
 b]]))

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 2572

Int[Sqrt[cos[(e_.) + (f_.)*(x_)]*(b_.)]*Sqrt[(a_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(Sqrt[a*Sin[e +
 f*x]]*Sqrt[b*Cos[e + f*x]])/Sqrt[Sin[2*e + 2*f*x]], Int[Sqrt[Sin[2*e + 2*f*x]], x], x] /; FreeQ[{a, b, e, f},
 x]

Rule 2613

Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(a^2*(a*Sec[
e + f*x])^(m - 2)*(b*Tan[e + f*x])^(n + 1))/(b*f*(m + n - 1)), x] + Dist[(a^2*(m - 2))/(m + n - 1), Int[(a*Sec
[e + f*x])^(m - 2)*(b*Tan[e + f*x])^n, x], x] /; FreeQ[{a, b, e, f, n}, x] && (GtQ[m, 1] || (EqQ[m, 1] && EqQ[
n, 1/2])) && NeQ[m + n - 1, 0] && IntegersQ[2*m, 2*n]

Rule 2615

Int[Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]]/sec[(e_.) + (f_.)*(x_)], x_Symbol] :> Dist[(Sqrt[Cos[e + f*x]]*Sqrt[b*
Tan[e + f*x]])/Sqrt[Sin[e + f*x]], Int[Sqrt[Cos[e + f*x]]*Sqrt[Sin[e + f*x]], x], x] /; FreeQ[{b, e, f}, x]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 3476

Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[b/d, Subst[Int[x^n/(b^2 + x^2), x], x, b*Tan[c + d
*x]], x] /; FreeQ[{b, c, d, n}, x] &&  !IntegerQ[n]

Rule 3881

Int[(cot[(c_.) + (d_.)*(x_)]*(e_.))^(m_)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> -Simp[(e*(e*Cot[
c + d*x])^(m - 1)*(a*m + b*(m - 1)*Csc[c + d*x]))/(d*m*(m - 1)), x] - Dist[e^2/m, Int[(e*Cot[c + d*x])^(m - 2)
*(a*m + b*(m - 1)*Csc[c + d*x]), x], x] /; FreeQ[{a, b, c, d, e}, x] && GtQ[m, 1]

Rule 3884

Int[(cot[(c_.) + (d_.)*(x_)]*(e_.))^(m_.)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(e*
Cot[c + d*x])^m, x], x] + Dist[b, Int[(e*Cot[c + d*x])^m*Csc[c + d*x], x], x] /; FreeQ[{a, b, c, d, e, m}, x]

Rule 3888

Int[(cot[(c_.) + (d_.)*(x_)]*(e_.))^(m_)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> Dist[a^(2*n
)/e^(2*n), Int[(e*Cot[c + d*x])^(m + 2*n)/(-a + b*Csc[c + d*x])^n, x], x] /; FreeQ[{a, b, c, d, e, m}, x] && E
qQ[a^2 - b^2, 0] && ILtQ[n, 0]

Rubi steps

\begin {align*} \int \frac {(e \tan (c+d x))^{9/2}}{a+a \sec (c+d x)} \, dx &=\frac {e^2 \int (-a+a \sec (c+d x)) (e \tan (c+d x))^{5/2} \, dx}{a^2}\\ &=-\frac {2 e^3 (5-3 \sec (c+d x)) (e \tan (c+d x))^{3/2}}{15 a d}-\frac {\left (2 e^4\right ) \int \left (-\frac {5 a}{2}+\frac {3}{2} a \sec (c+d x)\right ) \sqrt {e \tan (c+d x)} \, dx}{5 a^2}\\ &=-\frac {2 e^3 (5-3 \sec (c+d x)) (e \tan (c+d x))^{3/2}}{15 a d}-\frac {\left (3 e^4\right ) \int \sec (c+d x) \sqrt {e \tan (c+d x)} \, dx}{5 a}+\frac {e^4 \int \sqrt {e \tan (c+d x)} \, dx}{a}\\ &=-\frac {6 e^3 \cos (c+d x) (e \tan (c+d x))^{3/2}}{5 a d}-\frac {2 e^3 (5-3 \sec (c+d x)) (e \tan (c+d x))^{3/2}}{15 a d}+\frac {\left (6 e^4\right ) \int \cos (c+d x) \sqrt {e \tan (c+d x)} \, dx}{5 a}+\frac {e^5 \operatorname {Subst}\left (\int \frac {\sqrt {x}}{e^2+x^2} \, dx,x,e \tan (c+d x)\right )}{a d}\\ &=-\frac {6 e^3 \cos (c+d x) (e \tan (c+d x))^{3/2}}{5 a d}-\frac {2 e^3 (5-3 \sec (c+d x)) (e \tan (c+d x))^{3/2}}{15 a d}+\frac {\left (2 e^5\right ) \operatorname {Subst}\left (\int \frac {x^2}{e^2+x^4} \, dx,x,\sqrt {e \tan (c+d x)}\right )}{a d}+\frac {\left (6 e^4 \sqrt {\cos (c+d x)} \sqrt {e \tan (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \sqrt {\sin (c+d x)} \, dx}{5 a \sqrt {\sin (c+d x)}}\\ &=-\frac {6 e^3 \cos (c+d x) (e \tan (c+d x))^{3/2}}{5 a d}-\frac {2 e^3 (5-3 \sec (c+d x)) (e \tan (c+d x))^{3/2}}{15 a d}-\frac {e^5 \operatorname {Subst}\left (\int \frac {e-x^2}{e^2+x^4} \, dx,x,\sqrt {e \tan (c+d x)}\right )}{a d}+\frac {e^5 \operatorname {Subst}\left (\int \frac {e+x^2}{e^2+x^4} \, dx,x,\sqrt {e \tan (c+d x)}\right )}{a d}+\frac {\left (6 e^4 \cos (c+d x) \sqrt {e \tan (c+d x)}\right ) \int \sqrt {\sin (2 c+2 d x)} \, dx}{5 a \sqrt {\sin (2 c+2 d x)}}\\ &=\frac {6 e^4 \cos (c+d x) E\left (\left .c-\frac {\pi }{4}+d x\right |2\right ) \sqrt {e \tan (c+d x)}}{5 a d \sqrt {\sin (2 c+2 d x)}}-\frac {6 e^3 \cos (c+d x) (e \tan (c+d x))^{3/2}}{5 a d}-\frac {2 e^3 (5-3 \sec (c+d x)) (e \tan (c+d x))^{3/2}}{15 a d}+\frac {e^{9/2} \operatorname {Subst}\left (\int \frac {\sqrt {2} \sqrt {e}+2 x}{-e-\sqrt {2} \sqrt {e} x-x^2} \, dx,x,\sqrt {e \tan (c+d x)}\right )}{2 \sqrt {2} a d}+\frac {e^{9/2} \operatorname {Subst}\left (\int \frac {\sqrt {2} \sqrt {e}-2 x}{-e+\sqrt {2} \sqrt {e} x-x^2} \, dx,x,\sqrt {e \tan (c+d x)}\right )}{2 \sqrt {2} a d}+\frac {e^5 \operatorname {Subst}\left (\int \frac {1}{e-\sqrt {2} \sqrt {e} x+x^2} \, dx,x,\sqrt {e \tan (c+d x)}\right )}{2 a d}+\frac {e^5 \operatorname {Subst}\left (\int \frac {1}{e+\sqrt {2} \sqrt {e} x+x^2} \, dx,x,\sqrt {e \tan (c+d x)}\right )}{2 a d}\\ &=\frac {e^{9/2} \log \left (\sqrt {e}+\sqrt {e} \tan (c+d x)-\sqrt {2} \sqrt {e \tan (c+d x)}\right )}{2 \sqrt {2} a d}-\frac {e^{9/2} \log \left (\sqrt {e}+\sqrt {e} \tan (c+d x)+\sqrt {2} \sqrt {e \tan (c+d x)}\right )}{2 \sqrt {2} a d}+\frac {6 e^4 \cos (c+d x) E\left (\left .c-\frac {\pi }{4}+d x\right |2\right ) \sqrt {e \tan (c+d x)}}{5 a d \sqrt {\sin (2 c+2 d x)}}-\frac {6 e^3 \cos (c+d x) (e \tan (c+d x))^{3/2}}{5 a d}-\frac {2 e^3 (5-3 \sec (c+d x)) (e \tan (c+d x))^{3/2}}{15 a d}+\frac {e^{9/2} \operatorname {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\frac {\sqrt {2} \sqrt {e \tan (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} a d}-\frac {e^{9/2} \operatorname {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\frac {\sqrt {2} \sqrt {e \tan (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} a d}\\ &=-\frac {e^{9/2} \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt {e \tan (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} a d}+\frac {e^{9/2} \tan ^{-1}\left (1+\frac {\sqrt {2} \sqrt {e \tan (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} a d}+\frac {e^{9/2} \log \left (\sqrt {e}+\sqrt {e} \tan (c+d x)-\sqrt {2} \sqrt {e \tan (c+d x)}\right )}{2 \sqrt {2} a d}-\frac {e^{9/2} \log \left (\sqrt {e}+\sqrt {e} \tan (c+d x)+\sqrt {2} \sqrt {e \tan (c+d x)}\right )}{2 \sqrt {2} a d}+\frac {6 e^4 \cos (c+d x) E\left (\left .c-\frac {\pi }{4}+d x\right |2\right ) \sqrt {e \tan (c+d x)}}{5 a d \sqrt {\sin (2 c+2 d x)}}-\frac {6 e^3 \cos (c+d x) (e \tan (c+d x))^{3/2}}{5 a d}-\frac {2 e^3 (5-3 \sec (c+d x)) (e \tan (c+d x))^{3/2}}{15 a d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 13.01, size = 129, normalized size = 0.40 \[ \frac {4 e^3 \cos ^2\left (\frac {1}{2} (c+d x)\right ) \sec (c+d x) \left (\sqrt {\sec ^2(c+d x)}+1\right ) (e \tan (c+d x))^{3/2} \left (\, _2F_1\left (-\frac {1}{2},\frac {3}{4};\frac {7}{4};-\tan ^2(c+d x)\right )-\, _2F_1\left (\frac {1}{2},\frac {3}{4};\frac {7}{4};-\tan ^2(c+d x)\right )+\, _2F_1\left (\frac {3}{4},1;\frac {7}{4};-\tan ^2(c+d x)\right )-1\right )}{3 a d (\sec (c+d x)+1)^2} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(e*Tan[c + d*x])^(9/2)/(a + a*Sec[c + d*x]),x]

[Out]

(4*e^3*Cos[(c + d*x)/2]^2*(-1 + Hypergeometric2F1[-1/2, 3/4, 7/4, -Tan[c + d*x]^2] - Hypergeometric2F1[1/2, 3/
4, 7/4, -Tan[c + d*x]^2] + Hypergeometric2F1[3/4, 1, 7/4, -Tan[c + d*x]^2])*Sec[c + d*x]*(1 + Sqrt[Sec[c + d*x
]^2])*(e*Tan[c + d*x])^(3/2))/(3*a*d*(1 + Sec[c + d*x])^2)

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*tan(d*x+c))^(9/2)/(a+a*sec(d*x+c)),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (e \tan \left (d x + c\right )\right )^{\frac {9}{2}}}{a \sec \left (d x + c\right ) + a}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*tan(d*x+c))^(9/2)/(a+a*sec(d*x+c)),x, algorithm="giac")

[Out]

integrate((e*tan(d*x + c))^(9/2)/(a*sec(d*x + c) + a), x)

________________________________________________________________________________________

maple [C]  time = 1.69, size = 1505, normalized size = 4.62 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*tan(d*x+c))^(9/2)/(a+a*sec(d*x+c)),x)

[Out]

1/30/a/d*(-1+cos(d*x+c))^2*(-15*I*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(
1/2)*((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*cos(d*x+c)^3*EllipticPi(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c
))^(1/2),1/2+1/2*I,1/2*2^(1/2))+15*I*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c)
)^(1/2)*((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*cos(d*x+c)^2*EllipticPi(((1-cos(d*x+c)+sin(d*x+c))/sin(d*
x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))-15*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c
))^(1/2)*((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*cos(d*x+c)^3*EllipticPi(((1-cos(d*x+c)+sin(d*x+c))/sin(d
*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))-15*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+
c))^(1/2)*((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*cos(d*x+c)^3*EllipticPi(((1-cos(d*x+c)+sin(d*x+c))/sin(
d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))-36*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x
+c))^(1/2)*((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*cos(d*x+c)^3*EllipticE(((1-cos(d*x+c)+sin(d*x+c))/sin(
d*x+c))^(1/2),1/2*2^(1/2))+18*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)
*((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*cos(d*x+c)^3*EllipticF(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1
/2),1/2*2^(1/2))-15*I*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((1-cos
(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*cos(d*x+c)^2*EllipticPi(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2
+1/2*I,1/2*2^(1/2))+15*I*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((1-
cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*cos(d*x+c)^3*EllipticPi(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),
1/2-1/2*I,1/2*2^(1/2))-15*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((1
-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*cos(d*x+c)^2*EllipticPi(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)
,1/2-1/2*I,1/2*2^(1/2))-15*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((
1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*cos(d*x+c)^2*EllipticPi(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2
),1/2+1/2*I,1/2*2^(1/2))-36*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*(
(1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*cos(d*x+c)^2*EllipticE(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2
),1/2*2^(1/2))+18*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((1-cos(d*x
+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*cos(d*x+c)^2*EllipticF(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2*2^(1
/2))+28*2^(1/2)*cos(d*x+c)^3-24*cos(d*x+c)^2*2^(1/2)-10*cos(d*x+c)*2^(1/2)+6*2^(1/2))*cos(d*x+c)^2*(1+cos(d*x+
c))^2*(e*sin(d*x+c)/cos(d*x+c))^(9/2)/sin(d*x+c)^9*2^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (e \tan \left (d x + c\right )\right )^{\frac {9}{2}}}{a \sec \left (d x + c\right ) + a}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*tan(d*x+c))^(9/2)/(a+a*sec(d*x+c)),x, algorithm="maxima")

[Out]

integrate((e*tan(d*x + c))^(9/2)/(a*sec(d*x + c) + a), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {\cos \left (c+d\,x\right )\,{\left (e\,\mathrm {tan}\left (c+d\,x\right )\right )}^{9/2}}{a\,\left (\cos \left (c+d\,x\right )+1\right )} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*tan(c + d*x))^(9/2)/(a + a/cos(c + d*x)),x)

[Out]

int((cos(c + d*x)*(e*tan(c + d*x))^(9/2))/(a*(cos(c + d*x) + 1)), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*tan(d*x+c))**(9/2)/(a+a*sec(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________